Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Surgery ; 175(3): 726-734, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37914574

RESUMO

BACKGROUND: Serotonin is emerging as a promising therapeutic target in tryptophan hydroxylase 1-positive tumors, but further mechanistic studies are needed to effectively target dysregulated serotonin metabolism. One challenge is a lack of methods for studying the dynamic nature of serotonin metabolism. Here, we report the development of a genetically encoded luminescent biosensor, termed iSero-Rluc, for the real-time detection of serotonin in live cells. METHODS: The engineered serotonin binding domain (iSero) and Renilla luciferase (Rluc) reporter were cloned into yeast and mammalian expression vectors to create a fusion protein that could act as a biosensor to detect endogenous serotonin levels in live cells. The iSero-Rluc biosensor was stably expressed in the BON cell line and luciferase assays, mass spectroscopy, immunofluorescence, and Western blotting were used to study serotonin metabolism under different cell culture conditions. RESULTS: The iSero-Rluc sensor detected exogenous serotonin in a yeast model. When stably expressed in the BON cell line, iSero-Rluc revealed that serotonin biosynthesis is increased in an anchorage-independent growth state and is induced upon serum starvation. CONCLUSION: The iSero-Rluc biosensor is a powerful tool in the study of tumor serotonin metabolism. It enabled real-time detection of alterations in serotonin synthesis in living cells under various growth conditions and has the potential to provide greater insight into serotonin metabolism in different stages of tumor progression and to identify therapeutic strategies to target cancer metastases and carcinoid crises.


Assuntos
Carcinoma Neuroendócrino , Serotonina , Animais , Humanos , Saccharomyces cerevisiae , Linhagem Celular , Transdução de Sinais , Medições Luminescentes/métodos , Mamíferos/metabolismo
2.
bioRxiv ; 2023 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-37066322

RESUMO

Small bowel neuroendocrine tumors (SBNETs) originate from enterochromaffin cells in the intestine which synthesize and secrete serotonin. SBNETs express high levels of tryptophan hydroxylase 1 (Tph1), a key enzyme in serotonin biosynthesis. Patients with high serotonin level may develop carcinoid syndrome, which can be treated with somatostatin analogues and the Tph1 inhibitor telotristat ethyl in severe cases. Although the active drug telotristat can efficiently reduce serotonin levels, its effect on tumor growth is unclear. This study determined the effect of serotonin inhibition on tumor cell growth in vitro and in vivo . The levels of Tph1 in various neuroendocrine neoplasms (NENs) were determined and the biological effects of Tph1 inhibition in vitro and in vivo using genetic and pharmacologic approaches was tested. Gene and protein expression analyses were performed on patient tumors and cancer cell lines. shRNAs targeting TPH1 were used to create stable knockdown in BON cells. Control and knockdown lines were assessed for their growth rates in vitro and in vivo , angiogenesis potential, serotonin levels, endothelial cell tube formation, tumor weight, and tumor vascularity. TPH1 is highly expressed in SBNETs and many cancer types. TPH1 knockdown cells and telotristat treated cells showed similar growth rates as control cells in vitro . However, TPH1 knockdown cells formed smaller tumors in vivo and tumors were less vascularized. Although Tph1 inhibition with telotristat showed no effect on tumor cell growth in vitro , Tph1 inhibition reduced tumor formation in vivo . Serotonin inhibition in combination with other therapies is a promising new avenue for targeting metabolic vulnerabilities in NENs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...